Fisher Vectors for PolSAR Image Classification
نویسندگان
چکیده
منابع مشابه
Local Patch Vectors Encoded by Fisher Vectors for Image Classification
The objective of this work is image classification, whose purpose is to group images into corresponding semantic categories. Four contributions are made as follows: (i) For computational simplicity and efficiency, we directly adopt raw image patch vectors as local descriptors encoded by Fisher vector (FV) subsequently; (ii) For obtaining representative local features within the FV encoding fram...
متن کاملSpatial Fisher Vectors for Image Categorization
We introduce an extension of bag-of-words image representations to encode spatial layout. Using the Fisher kernel framework we derive a representation that encodes the spatial mean and the variance of image regions associated with visual words. We extend this representation by using a Gaussian mixture model to encode spatial layout, and show that this model is related to a soft-assign version o...
متن کاملRNN Fisher Vectors for Action Recognition and Image Annotation
Recurrent Neural Networks (RNNs) have had considerable success in classifying and predicting sequences. We demonstrate that RNNs can be effectively used in order to encode sequences and provide effective representations. The methodology we use is based on Fisher Vectors, where the RNNs are the generative probabilistic models and the partial derivatives are computed using backpropagation. State ...
متن کاملRemote Sensing Image Scene Classification Using Multi-Scale Completed Local Binary Patterns and Fisher Vectors
An effective remote sensing image scene classification approach using patch-based multi-scale completed local binary pattern (MS-CLBP) features and a Fisher vector (FV) is proposed. The approach extracts a set of local patch descriptors by partitioning an image and its multi-scale versions into dense patches and using the CLBP descriptor to characterize local rotation invariant texture informat...
متن کاملPolSAR Image Classification Based on Deep Convolutional Neural Network
For introducing the advantages of feature learning and multilayer network in the interpretation of Polarimetric synthetic aperture radar (PolSAR) image, a classification algorithm based on deep convolutional neural network is proposed, and is used for PolSAR image classification. Firstly, a special convolutional neural network (CNN) for PolSAR image is constructed, secondly, a large number of P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2017
ISSN: 1545-598X,1558-0571
DOI: 10.1109/lgrs.2017.2750800